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Abstract: The recent introduction of the chytrid fungus Batrachochytrium salamandrivorans into north-
eastern Spain threatens salamander diversity on the Iberian Peninsula. We assessed the current
epidemiological situation with extensive field sampling of urodele populations. We then sought to
delineate priority regions and identify conservation units for the Iberian Peninsula by estimating
the susceptibility of Iberian urodeles using laboratory experiments, evidence from mortality events
in nature and captivity and inference from phylogeny. None of the 1395 field samples, collected
between 2015 and 2021 were positive for Bsal and no Bsal-associated mortality events were recorded,
in contrast to the confirmed occurrence of Bsal outbreak previously described in 2018. We classified
five of eleven Iberian urodele species as highly susceptible, predicting elevated mortality and popula-
tion declines following potential Bsal emergence in the wild, five species as intermediately susceptible
with variable disease outcomes and one species as resistant to disease and mortality. We identified
the six conservation units (i.e., species or lineages within species) at highest risk and propose priority
areas for active disease surveillance and field biosecurity measures. The magnitude of the disease
threat identified here emphasizes the need for region-tailored disease abatement plans that couple
active disease surveillance to rapid and drastic actions.

Keywords: chytridiomycosis; amphibian chytrid fungus; salamanders; Spain; Portugal; threat;
conservation-units; surveillance; biosecurity

1. Introduction

Emerging fungal wildlife diseases are increasingly threatening biodiversity [1,2].
A prominent example is the amphibian disease chytridiomycosis, which has contributed
to numerous amphibian declines in the Americas and Australia, and some declines in
Europe [3–6]. Chytridiomycosis is caused by the chytrid fungi Batrachochytrium salaman-
drivorans (Bsal) and B. dendrobatidis (Bd), which are both thought to have originated in East
Asia and to have been spread by humans to Europe [7,8]. Since the description of Bsal
in 2013 in the Netherlands, it has been detected in adjacent areas of Belgium, France and
Germany [9,10]. The severe decline of the fire salamander (Salamandra salamandra) from
infected regions has generated elevated concern for the persistence of other salamander
species in Europe as Bsal continues to spread [11].
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In 2018, a disjunct Bsal outbreak was detected in the Iberian Peninsula in northeast-
ern Spain, nearby to Europe’s most threatened newt species, the Montseny brook newt
(Calotriton arnoldi) [12]. Two other recent reports have reported positive qPCR results in
north central Spain [13,14]. With seven genera, ten species and a high number of small-
range endemic lineages, the Iberian Peninsula is a hotspot of diversification of the family
Salamandridae. As such, the recent incursion of Bsal into the region may pose an acute
threat to this peninsula’s urodele diversity. Mitigating potential impacts requires a better
understanding of Bsal’s distribution in the Iberian Peninsula and species susceptibility.

The impact of Bsal introduction is determined by a complex interplay between host
and pathogen in a given environmental context [15–19]. Bsal infection results in a wide
spectrum of outcomes, with consistent, low-level and asymptomatic infections in some
species, variable levels and disease courses in others and consistently lethal infections in
the most vulnerable, hypersusceptible species [11]. While the mechanisms underpinning
infection and disease dynamics are incompletely understood, several (potential) drivers
have been identified. For example, host susceptibility to lethal disease varies with life stage,
species, infectious dose, thermal ecology and prior infections [15,17,20]. Further, biotic
and abiotic environmental pathogen reservoirs contribute to the rapid population decline
observed in hypersusceptible species [21].

The successful mitigation of Bsal impacts in the Iberian Peninsula requires early detec-
tion of disease, coupled with fast and sustained implementation of drastic control measures
to contain the pathogen. Mitigation actions can be informed by threat analyses, which can
guide preventive and remedial conservation efforts, with the ultimate goal of ensuring the
long-term persistence of the unique Iberian urodele diversity. Threat assessment requires
awareness of the factors governing the probability of pathogen introduction and expected
impact. Potential avenues for Bsal introduction include infected amphibian hosts (either
from neighboring and infected populations or after release by humans), nonamphibian
hosts (e.g., waterfowl) and fomites through passive transport. The trade in live amphibians
has probably vectored Bsal into Europe from its origin in Asia [11,22,23] and is likely to
have contributed to long-distance spread across Europe and introduction in Spain [12].
The latter may explain the current, rather erratic distribution pattern of Bsal in Europe
and suggests the potential of novel introductions and disease outbreaks throughout Bsal’s
predicted niche [17,24].

Here, we estimate the risk Bsal poses to Iberian urodeles by (i) assessing the current
distribution of the pathogen and epidemiological situation, (ii) estimating the suscepti-
bility of Iberian urodeles using laboratory experiments and (iii) inferring susceptibility
based on phylogenetic relationships. We then combine this information with overlays of
species distributions to delineate priority regions and identify conservation units for the
Iberian Peninsula.

2. Materials and Methods
2.1. Distribution of Bsal in the Iberian Peninsula

Between 2015–2021, we opportunistically sampled 66 populations of 10 Iberian urodele
species, with a total of 1395 individuals sampled (Table S1). Recent reports of Bsal-positive
qPCRs from Asturias [13,14] resulted in more intensive sampling efforts in this region,
where we resampled two localities previously reported as positive. The vast majority
of samples derived from surveys of live urodeles, with 21 samples from dead animals.
Animals were sampled using cotton-tipped swabs and the swabs were examined for the
presence of Bsal DNA using qPCR as described elsewhere [25]. In some cases, toe clips
were collected and processed for qPCR. DNA was extracted from tissue using the DNAeasy
Blood and Tissue kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s
protocol. All animals were released on site after sampling.

Samples were also collected following reports to the hotline in Spain and Portugal,
through which amphibian mortality events can be reported. The reporting of amphibian
mortality events to this hotline results in diagnostic testing for Bsal. The diagnosis of
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Bsal chytridiomycosis combines a positive qPCR results with histopathology of dead
animals [26].

2.2. Infection Dynamics of Bsal in Iberian Urodeles

Infection dynamics and disease course were experimentally assessed in Chioglossa
lusitanica, Calotriton asper and Lissotriton boscai using previously described methods [11]. We
compared infection dynamics of Bsal between captive Chioglossa lusitanica, Lissotriton boscai
and Calotriton asper (permits Xunta de Galicia, ref 6370/RX763724_24/0/18 and INAGA,
ref 500201/24/2018/3311) with those from the reference urodele species for susceptibility:
the fire salamander (Salamandra salamandra). For all species, five or six adult specimens
were inoculated with 103 zoospores of the Bsal type strain AMFP13/1 using an established
protocol [11]. In addition, given recent positive qPCR results from the Palmate newt
(Lissotriton helveticus) in northern Spain [13,14], we also infected 10 captive bred palmate
newts with two additional Bsal isolates (isolates AMFP14/1 and AMFP15/1; 5 animals per
isolate) to study infection dynamics in this species. An earlier infection trial has indicated
that L. helveticus has low susceptibly to Bsal infection [11]. The experiment was approved by
the ethics committee of the Faculty of Veterinary Medicine (Ghent University, Merelbeke,
Belgium, 2013/10; 2013/79; 2017/75).

Briefly, animals were individually exposed for 24 h at 15 ◦C to 103 zoospores of
Bsal in 1 mL of water. Afterwards, the salamanders were housed individually in plastic
containers lined with moist tissue and containing a PVC tube as a hiding place or, for
C. asper, in plastic containers holding 2 cm of water and a PVC tube. Temperatures were kept
constant at 15 ◦C and dim, natural light was provided. The terrestrial salamanders were fed
two times weekly ad libitum with crickets (Acheta domestica) and the aquatic ones with
Tubifex (C. asper). Infection loads were followed with weekly sampling of all animals
using cotton-tipped swabs and subsequent qPCR analysis to quantify Bsal loads [25]. For
C. asper, none of the animals were infected after the first exposure. Five of these animals
were re-exposed one year later following the same protocol.

Susceptibility was considered “high” in cases of high infection loads, with consistent
and elevated mortality (>80%) in lab trials. “Intermediate” susceptibility was attributed
to those taxa that demonstrated low or variable mortality in lab trials. Susceptibility was
considered low in cases of low-level infections and the absence of overt clinical signs and
mortality. Where data of disease outbreaks in captivity and/or nature were available, these
were added for a more comprehensive assessment of the level of susceptibility. Where
available, we added data of susceptibility for known invasive urodeles in the Iberian
Peninsula: Triturus anatolicus and Ommatotriton nesterovi/ophryticus, which could potentially
play a role in disease ecology.

2.3. Phylogenetic Influence upon Urodele Susceptibility to Bsal

We used the phytools v0.7.80 package [27] to evaluate the potential phylogenetic signal
of urodele susceptibility to Bsal infection, based on susceptibility as outlined above for all
European urodeles. We first converted lab-determined susceptibility to an ordinal scale,
with “low” susceptibility recorded as 1, “intermediate” as 2 and “high” as 3, before using
the phylosig function to calculate phylogenetic signal. The Jetz and Pyron phylogeny [28]
was used, and the process repeated 1000 times, each time employing a randomly selected
tree from the phylogeny.

2.4. Defining Priority Areas and Conservation Units for Iberian Urodeles

For all Iberian species, previously published data were included from infection trials
and from disease outbreaks in nature or captivity and combined with the infection trials
and the phylogenetic modeling described above to classify susceptibility (Table S2). Three
lines of direct evidence (lab trials, mortality events in the field and mortality events in
captivity) were available for three species (Ichthyosaura alpestris, Triturus marmoratus and
Salamandra salamandra). Bsal-associated mortality was observed in Lissotriton boscai in
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a lab trial and during an outbreak in captivity. A single line of evidence of susceptibility
derived from lab trials was available for five species (Calotriton arnoldi, C. asper, Chioglossa
lusitanica, Lissotriton helveticus, Pleurodeles waltl) and susceptibility in Triturus pygmaeus was
estimated based on a mortality event in captivity only. No information was available for
Lissotriton maltzani.

For all species, we defined or estimated the range of conservation units to identify
small-range susceptible lineages at the highest risk of extirpation in case of Bsal invasion
(Table 1). Delineation of conservation units was based on defining evolutionary signifi-
cant units (ESUs). ESUs were here defined as distinct Pleistocene lineages, which were
retrieved from published phylogenetic/phylogeographic studies of Iberian urodeles (see
Table S1). Diversification of Iberian urodeles (as for most of ectothermic Iberian taxa) mostly
occurred during the Pleistocene climatic oscillations that led to population fragmentation
and species survival within climatically stable areas (i.e., refugia) across the heterogeneous
Iberian topography, followed by genetic differentiation and the formation of parapatric
and allopatric distributions within species. While deeper (Pliocene) and more recent events
(Holocene and Anthropocene) of diversification also shape the current genetic diversity
and structure of Iberian urodeles, the Pleistocene is the dominant force, and the most
studied geological epoch for salamander diversification in Iberia.

Small range was defined as occupancy of 100 or less 10 km × 10 km, using published
databases (https://siare.herpetologica.es/bdh/distribucion for Spain and http://www2
.icnf.pt/portal/pn/biodiversidade/patrinatur/atlas-anfi-rept for Portugal), both accessed
6 August 2021). We then compiled a species richness map of those Iberian urodeles
considered susceptible to Bsal to identify regions with the estimated highest impact of Bsal
on biodiversity and areas with high-risk conservation units. Using the raster v3.4.13 [29],
rgdal v1.5.23 [30] and sf v1.0.0 [31] packages, we first defined the ranges of Iberian urodeles
using raster files (10 × 10 km) obtained from the above national databases. To each
raster we gave a normalized value of risk related to Bsal susceptibility as outlined in
Table S2. Each raster was overlaid, and the species richness of each 2.5 arcminute grid cell
also normalized. For each cell, the mean was calculated between the normalized species
richness and normalized risk, such that cells with higher values are deemed to have higher
conservation value.

Table 1. Iberian urodeles’ susceptibility to Bsal infection (1 = low, 2 = intermediate, 3 = high), an estimate of the number of
10 × 10 squares occupied by small range lineages (<100 squares) and their known genetic Pleistocene lineages as a proxy for
conservation units. We highlight the existence of population genetic structure and other relevant information regarding
the spatial genetic structure obtained from the literature (references) for each species/lineage. Shaded rows represent
conservation units considered at highest risk.

(Sub-)Species Bsal Risk Number of
10 km × 10 km Squares

Pleistocene
Lineages Remark Reference(s)

Calotriton arnoldi 3 2 1 Population genetic structure [32,33]
Calotriton asper 2 >100 1 Population genetic structure [34,35]

Chioglossa l. longipes 3 >100 1 [36–38]
Chioglossa l. lusitanica 3 <70 1 [36–38]
Ichthyosaura alpestris

cyreni 2 >100 1 Population genetic structure [39,40]

Lissotriton boscai 2 >100 for all clades 4 Population genetic structure [41–43]
Lissotriton maltzani 2 >100 1 [41,42,44]

Lissotriton helveticus 1 >100 for all clades 4 [45]

Pleurodeles waltl 2 <30 for Algarve clade
>100 for other clades 4

Small range population in
Algarve somewhat

differentiated but nuclear
DNA shows admixed group

covering a large area

[46–48]

https://siare.herpetologica.es/bdh/distribucion
http://www2.icnf.pt/portal/pn/biodiversidade/patrinatur/atlas-anfi-rept
http://www2.icnf.pt/portal/pn/biodiversidade/patrinatur/atlas-anfi-rept
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Table 1. Cont.

(Sub-)Species Bsal Risk Number of
10 km × 10 km Squares

Pleistocene
Lineages Remark Reference(s)

Salamandra
salamandra almanzoris 3 <30 for both clades 2 Population genetic

structure [49,50]

Salamandra s. bejarae 3 >100 2 Range of lineage not
well known

[50] GV-A
unpublished

Salamandra
s. bernardezi 3 approx. 100 for

the subspecies 2–7
High diversity in a small

region; population
genetic structure

[51–54] GV-A
unpublished

Salamandra s. crespoi 3 <70 1 [55] GV-A
unpublished

Salamandra s. fastuosa 3 >100 1 [53,56,57] GV-A
unpublished

Salamandra s. gallaica 3 >100 for the subspecies 4
Range of lineage not well

known; population
genetic structure

[43,54,57,58] GV-A
unpublished

Salamandra
s. hispanica 3 >100 1 [57]

Salamandra
s. longirostris 3 <100 3

Shallow lineages,
considered one

conservation unit;
population genetic

structure

[59]

Salamandra
s. morenica 3 >100 1 [55] GV-A

unpublished

Triturus marmoratus 3 >100 for the species 2 Range of lineage not
well known [60]

Triturus pygmaeus 3 >100 for the species 2 Range of lineage not
well known [60]

3. Results
3.1. Bsal Is Currently Confirmed from a Single Outbreak Site on the Iberian Peninsula

None of the 1395 samples, collected between 2015 and 2021, were positive for Bsal
(Figure 1). An intensive sampling effort was conducted in northern Spain (Asturias and
southwestern Galicia) due to recent reports of Bsal-positive qPCRs from Asturias and its
neighbor Cantabria [13,14]. However, Bsal was not detected in any of the 326 samples
collected in this region. Between November 2020 and June 2021, seven cases of amphibian
mortality events affecting three species (Salamandra salamandra, Triturus marmoratus and
Lissotriton helveticus), were reported from the Cantabrian range to the hotline and examined
for the presence of Bsal. None yielded the detection of Bsal.

3.2. Infection and Disease Dynamics of Bsal in Iberian Urodeles

Exposure of six S. salamandra to the Bsal type strain resulted in buildup of lethal
Bsal infections (experiment ended at four weeks post inoculation to comply with humane
endpoints). All six C. lusitanica died within seven weeks after experimental exposure to Bsal,
with Bsal infection loads increasing over time (Figure 2). In contrast, none of the five C. asper
died, up until the end of the experiment at 16 weeks post inoculation. Only two animals
developed detectable and fluctuating Bsal infections; one of these animals developed
skin ulcerations. Both newts remained Bsal positive until the end of the experiment.
Five of six L. boscai developed Bsal infection. One of six L. boscai died at 16 weeks post
inoculation, whereas two animals had cleared infection at 20 weeks post inoculation and
two animals remained Bsal positive for the entire duration of the experiment (20 weeks).
None of the 15 L. helveticus, exposed to one of three Bsal isolates (including the Bsal type
strain [11]), developed high level infections or clinical signs and none died. Only two L.
helveticus exposed to the Bsal type strain (AMFP13/1) yielded a single borderline positive
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swab sample during the experiments; none exposed to the other isolates (AMFP14/1 and
AMFP15/1) developed infections.
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infection. None of the 1395 samples collected were positive. An intensive sampling effort was conducted in northern Spain
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each species per location, and the sample size at each locality is indicated by the size of the pie chart.

3.3. Inferring Bsal Susceptibility within and between Species

We found phylogeny to be related to a species’ susceptibility to Bsal infection, with
Pagel’s λ equal to 0.639 (±0.001). This relationship was significant (p = 0.021) across
1000 replicates. This suggests that a species’ lab-determined susceptibility to Bsal infec-
tion is a reliable indicator of its closest relatives’ risk. We thus inferred susceptibility
for species for which substantial empirical evidence is lacking (L. maltzani and T. pyg-
maeus) as intermediate and high, respectively) and we considered different lineages within
a given species as equally susceptible. We therefore extrapolated the data from the lab
trials, derived from a single source population, to all lineages of that given species.
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Figure 2. Overview of infection dynamics of Bsal after experimental exposure of salamanders to a single dose of
103 zoospores. Each line represents the infection dynamics of a single animal. All S. salamandra and C. lusitanica died,
compared to one L. boscai and no C. asper. Infection loads are expressed as genomic equivalents (GE) of Bsal per swab
per timepoint.

3.4. Priority Areas and Lineages for Conserving Iberian Urodele Diversity

Combining data from lab trials, mortality events in captivity, outbreaks in nature
and phylogenetic modeling resulted in an estimated high susceptibility for five native
Iberian urodele, intermediate susceptibility for four species and low susceptibility for one
species (Table S2). One species (C. asper) was considered low-to-intermediately suscepti-
ble, given the development of intermittent high-level infections, accompanied by clinical
lesions in only one animal. Two invasive species, Triturus anatolicus and Ommatotriton
nesterovi/ophryticus, were classified as low and high, respectively. The predicted hotspots
for urodele biodiversity loss given the introduction of Bsal are depicted in Figure 3.

We identified six conservation units at highest risk (Table 1): four small range and
susceptible subspecies of the fire salamander (S. salamandra), the nominate subspecies
of the golden striped salamander (C. lusitanica lusitanica) and the Montseny brook newt
(C. arnoldi).
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Figure 3. Spatial prediction of risk to Iberian urodeles from Bsal introduction. Each cell (10 km × 10 km) represents the
normalized risk to biodiversity loss, given both species richness and the predicted susceptibility of inhabitants to Bsal
infection. Darker red cells, as in the northwest/west regions of the peninsula, indicate areas likely to be most at risk should
Bsal be introduced. Transparent gray cells are those with no salamander inhabitants.

4. Discussion

Based on our results, Bsal currently appears to be restricted to a single previously
described site in northeastern Spain, where mortality in T. marmoratus and S. s. hispanica
was observed [12]. Outside of this area, none of our qPCR samples returned Bsal-positive
results and no disease outbreaks were reported. In our assessment of species vulnerability,
we demonstrate or infer that the majority of Iberian salamanders are susceptible to Bsal
infection, suggesting a high likelihood of mass mortality events in most Iberian urodele
species if Bsal becomes widespread. In the remainder of this paper, we discuss our re-
sults in the context of other recent Bsal reports from the Iberian Peninsula and provide
recommendations to minimize disease outbreak risk and impacts.

4.1. Distribution of Bsal in the Iberian Peninsula

Our results contrast with two recent reports of positive qPCR Bsal results from northern
Spain, not linked to obvious disease or mortality. The first report [14] mentions five positive
skin swabs in palmate newts (Lissotriton helveticus). This study was followed by a second
study sampling water bodies for eDNA, which yielded a high proportion of qPCR positive
samples [13]. Despite our intensive sampling effort, we did not succeed in confirming
these results in this region. Two exact localities were resampled and, besides a lack of Bsal
detection, these sites hosted important and healthy populations of highly susceptible newts
(Triturus marmoratus). Absence of disease outbreaks and low susceptibility of palmate
newts ([11]; this study) raises doubts whether the positive PCRs results reported in [13,14]
reflect the true presence of Bsal. False positive results have been reported for this diagnostic
test [61–63] and may have far-reaching implications for conservation, since these may lead
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to the false conclusion that Bsal is apathogenic and widespread in wild urodele populations.
Such conclusions are likely to affect the allocation of resources to mitigate the impact of this
disease. For this reason, the OIE guidance explicitly specifies confirmation is needed using
an independent diagnostic test (e.g., histopathology, culture) for a definitive Bsal diagnosis
in a novel site or host species. The results of the current study support the validity of
this requirement [26] and we urge caution interpreting conclusions based on qPCR-only
results in novel sites or host species; such results should be treated as “Bsal suspect” until
cross-validation has been conducted.

4.2. Susceptibility of Iberian Urodeles

By using all available lines of evidence, we predict the susceptibility of Iberian urodeles
to Bsal. When no direct information was available, given we showed a strong phylogenetic
signal for susceptibility, we used phylogenetic relatedness to infer susceptibility between
different lineages of the same species and between species. We suggest considering differ-
ent lineages of the same species equally susceptible given similar environmental conditions,
which is further corroborated by evidence from Bsal outbreaks in captivity. During such
outbreaks in collections of fire salamanders (Salamandra salamandra), mortality has been
observed in most known subspecies, including several ones identified here as conservation
units at high risk (S. s. bernardezi, S. s. almanzoris, S. s. longirostris [64,65]). For species for
which no data (lab trials, outbreaks in nature or captivity) are available, we inferred sus-
ceptibility from its nearest relative. Of 11 Iberian species, we thus consider 10 susceptible
to infection, five of which are predicted to be highly susceptible, suggesting significant
population declines and the potential of population extirpation as witnessed in Salamandra
salamandra in northern Europe. The likelihood of Bsal invasion is supported by predicted
ecological niche overlap of Bsal with at least seven Iberian urodele species [24]. Since macro-
climatic modeling obscures local host ecology and associated microclimatic conditions,
Bsal may infect species that occur in cool and humid microhabitats within Mediterranean
landscapes outside the pathogen’s predicted macroscale range [17,66]. Thus, we consider
that all Iberian urodele populations could be at risk of infection by Bsal (i.e., broadscale
climate refugia are unlikely to be present). However, this does not preclude the potential
for local-scale microrefugia. Refugia would require environmental and body tempera-
tures of the entire host community to exceed those of the thermal tolerance of Bsal long
enough to kill the fungus entirely [17,67]. In practice, given the current understanding
of the Bsal climate niche [17,66], a complete refugium would mean that the entire suit-
able host community and the infected environment maintain temperatures of 25 ◦C or
more for at least 10 days. While lower temperatures that fail to eradicate the fungus
may still have an impact by temporarily tempering virulence and slowing down fungal
growth [15,16,67], such conditions could extend the infectious period of an infected host,
facilitating fungal survival in the host population with the potential of disease flareups once
temperatures drop.

4.3. Conservation Units for Iberian Urodeles

We define conservation units at highest risk of Bsal-driven extinction as evolutionary
significant units of susceptible species, which occupy a range of less than 10,000 km2. While
this threshold is arbitrary, it considers the relatively slow, but consistent natural spread
of Bsal [68], as has been observed in Germany [69–74]. While the European action plan to
mitigate Bsal infections [75] provides a Europe-wide risk assessment, we here used a more
detailed geographic and genetic scale to develop region specific conservation strategies.
Since the Iberian Peninsula has served as a regional glacial refuge during the Pleistocene,
with multiple microhabitat refuges within it [76], this spatial complexity has contributed to
the region being characterized as a European hotspot of diversity in the Salamandridae
(e.g., [57]). The following six conservation units reflect this diversity at small scales, with
representation of four subspecies of Salamandra salamandra, a range restricted subspecies
of the monotypic Chioglossa lusitanica and the very small range Calotriton arnoldi. We pro-
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pose Pleistocene delineation of these conservation units as a relevant and manageable,
yet still relatively coarse scale. A more detailed scale could take into account more re-
cent population structuring that has been demonstrated in a number of Iberian urodeles
(Table 1) and may be preferred where resources are available.

Our proposed conservation units are based on current information, but new informa-
tion could alter the list of priority lineages. For a few lineages, detailed data regarding
genetic diversity and ranges occupied are currently missing, hampering proper delineation
of conservation units. Current evidence suggests the existence of multiple evolutionary
significant units for at least T. marmoratus, T. pygmaeus, S. salamandra gallaica and possibly
S. s. bejarae. The acute threat of Bsal stresses the importance of in depth amphibian popula-
tion assessments of genetic diversity and structure to maximize opportunities of persistence
of salamander diversity.

4.4. Conservation Actions and Recommendations

The 2018 Bsal outbreak in the Iberian Peninsula was associated with mortality in
at least two salamander lineages (T. marmoratus, S. s. hispanica [12]). The proximity of
this outbreak to the distribution of Europe’s most threatened newt, the Montseny brook
newt, alerted Catalan authorities who took swift action in collaboration with scientists and
managers. A combination of host removal, fencing off the infected site, disinfection and
setting a perimeter for disease surveillance contained the outbreak. Since mitigation success
strongly depends on a rapid response, early detection of Bsal outbreaks is key [77,78].
Although active disease surveillance and population monitoring of susceptible populations
across the Iberian Peninsula would be ideal, associated costs would be prohibitive. We
therefore propose a more pragmatic, dual approach, combining passive reporting and
fully comprehensive surveillance and population monitoring, coupled to the possibility
of rapid disease diagnosis and mitigative actions [79]. Passive reporting would consist
of centralized communication of urodele disease and mortality events across the Iberian
Peninsula to a hotline by all stakeholders (including the general public, forest workers and
scientists). Resources for active disease surveillance and population monitoring could be
reserved for those areas where Bsal is predicted to cause the most pronounced biodiversity
losses and/or highest risk of extinction of important conservation units (Figure 3).

The response required if Bsal is detected depends on the management objective.
An ideal goal could be to maximize the probability of longtime persistence of all con-
servation units. Since Bsal containment, but not necessarily eradication, seems currently
feasible [12], one focus could be on minimizing opportunities for further Bsal spread, even
if this means large-scale host removal from the affected population to protect neighboring
populations. Host removal requires either mass culling or setting up an ex situ program.
While culling is commonplace for livestock, Bsal outbreaks involve wild and protected
animals and such actions are prone to adverse public reactions. However, such options
require consideration, as the long term ex situ management of large numbers of animals
requires significant resources, with a high level of uncertainty of eventual rewilding suc-
cess [12,80]. Maximizing the likelihood of success requires a clear decision context allowing
fast decisions (including the necessary permits) and rapid initiation of drastic manage-
ment actions [77]. We, therefore, call upon the Spanish and Portuguese authorities for
preparedness through the development of a region-specific Bsal action plan that details the
decision tree, clear attribution of responsibilities and the ability to quickly deploy resources
and management actions when and where needed [78]. Such actions could consist of
a combination of in situ and ex situ measures as detailed elsewhere [79] and should be
maintained as long as the threat persists. Building capacity for ex situ conservation may be
most useful for the six conservation units most vulnerable Bsal-driven extinction. The quick
response to the Catalan outbreak and the presence of an ex situ conservation program for
the Montseny brook newt (Calotriton arnoldi [81]) may serve as examples.

Given the expected loss of biodiversity and limited means of remedial action, pre-
venting novel Bsal invasions is key. The risk of novel introductions could be reduced by
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promoting “clean trade” (absence of Bsal throughout the amphibian trade) by testing and
treating captive amphibian collections throughout the commercial chain [12,65], improved
biosecurity during field activities involving amphibians (including conservation actions
like reintroductions or reinforcements, e.g., [82]) and controlling populations of invasive
species. Invasive exotic urodele species (Ommatotriton ophryticus/nesterovi, Triturus anatoli-
cus) in Spain have originated from released captive individuals [83] and are likely to have
introduced Bsal in northern Spain in 2018 [12]. Anthropogenic movement of indigenous
species (e.g., I. alpestris [40]; C. lusitanica [84]) equally carries the risk of pathogen spread.
Since several of these species may develop chronic, high level infections, they may act as
disease reservoirs that facilitate frequency-dependent Bsal transmission, which increases
the probability of extirpation of highly susceptible species [15,85] and hence should be
considered in risk assessments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7080644/s1, Table S1: Sampling of Spanish urodeles for the presence of Bsal between 2015
and 2021; Table S2: Susceptibility estimate of Iberian urodeles.
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